
GridPlus SDK Documentation
Release 0.0.0

Alex Miller

Jan 28, 2022

Contents

1 Installation 3

2 Instantiating a Client 5
2.1 Client options . 5

3 Connecting to a Lattice 7
3.1 Canceling a Pairing Request . 7

4 Pairing with a Lattice 9

5 Getting Addresses 11

6 Requesting Signatures 13
6.1 Request Types . 13
6.2 ETH (Ethereum transaction) . 13
6.3 ETH_MSG (Ethereum message) . 14
6.4 BTC (Bitcoin transaction) . 15
6.5 Requesting the Signature . 15

7 Getting Active Wallets 17
7.1 Detecting Card Insertion/Removal . 17

i

ii

GridPlus SDK Documentation, Release 0.0.0

The GridPlus SDK allows any application to establish a connection and interact with a GridPlus Lattice device.

Contents 1

https://github.com/GridPlus/gridplus-sdk

GridPlus SDK Documentation, Release 0.0.0

2 Contents

CHAPTER 1

Installation

This SDK is currently only available as a node.js module. You can add it to your project with:

npm install gridplus-sdk

You can then import a new client with:

import { Client } from 'gridplus-sdk';

or, for older style syntax:

const Sdk = require('gridplus-sdk').Client;

3

GridPlus SDK Documentation, Release 0.0.0

4 Chapter 1. Installation

CHAPTER 2

Instantiating a Client

Once imported, you can instantiate your SDK client with a clientConfig object, which at minimum requires
the name of your app (name) and a private key with which to sign requests (privKey). The latter is not meant to
e.g. hold onto any cryptocurrencies; it is simply a way of maintaining a secure communication channel between
the device and your application.

const crypto = require('crypto');
const clientConfig = {

name: 'MyApp',
crypto: crypto,
privKey: crypto.randomBytes(32).toString('hex')

}

2.1 Client options

5

GridPlus SDK Documentation, Release 0.0.0

6 Chapter 2. Instantiating a Client

CHAPTER 3

Connecting to a Lattice

With the clientConfig filled out, you can instantiate a new SDK object:

const client = new Client(clientConfig);

With the client object, you can make a connection to any Lattice device which is connected to the internet:

const deviceId = 'MY_LATTICE';
client.connect(deviceId, (err, isPaired) => {

...
});

If you get a non-error response, it means you can talk to the device. Note that the response also tells you whether
you are paired with the device.

The deviceId is listed on your Lattice under Settings->Device Info

3.1 Canceling a Pairing Request

If you get isPaired = false in the callback, this request will have started the pairing request with the
specified device, which will now be showing a random 8 character pairing code for 60 seconds.

If you wish to cancel this request, you may call pair() with an empty string '' as the first argument. This
will gracefully cancel the request. You may also call pair() with any random string which will also cancel the
request, but the Lattice will show an error screen.

7

GridPlus SDK Documentation, Release 0.0.0

8 Chapter 3. Connecting to a Lattice

CHAPTER 4

Pairing with a Lattice

This function requires the user to interact with the Lattice. It therefore uses your client’s timeout to
sever the request if needed.

When connect is called, your Lattice will draw a random, six digit secret on the screen. The SDK uses this to
“pair” with the device:

client.pair('SECRET', (err, hasActiveWallet) => {
...

});

A non-error response indicates you may now make encrypted requests.

If hasActiveWallet = false, it means there was an error fetching the current wallet on the
device. This could mean the device has not been set up or that a SafeCard is inserted which has not
been set up. It could also mean there was an error with the connection. If you try to get addresses or
sign without an active wallet saved (it is saved automatically if hasActiveWallet = true), the
SDK will automatically retry fetching the active wallet before making the original request.

9

GridPlus SDK Documentation, Release 0.0.0

10 Chapter 4. Pairing with a Lattice

CHAPTER 5

Getting Addresses

If the SDK is connected to the wrong wallet or if the device has no current active wallet, this request
will take additional time to complete.

You may retrieve some number of addresses for supported cryptocurrencies. The Lattice uses BIP44-compliant
highly-deterministic (HD) wallets for generating addresses. You may request a set of contiguous addresses (e.g.
indices 5 to 10 or 33 to 36) based on a currency (ETH or BTC). For now, you may only request a maximum of 10
addresses at a time from the Lattice per request.

NOTE: For BTC, the type of address returned will be based on the user’s setting. For example, if the
user’s latter is configured to return segwit addresses, you will get addresses that start with 3.

An example request looks like:

const HARDENED_OFFSET = 0x80000000;
const req = {

// -- m/49'/0'/0'/0/0, i.e. first BTC address
startPath: [HARDENED_OFFSET+49, HARDENED_OFFSET, HARDENED_OFFSET, 0, 0],
n: 4

};
client.addresses(req, (err, res) => {

...
})

NOTE: For v1, the Lattice1 only supports p2sh-p2wpkh BTC addresses, which require a 49'
purpose, per BIP49. Ethereum addresses use the legacy 44' purpose.

Options:

Response:

Returns an array of address strings (if the user’s Lattice is configured to return segwit addresses):

res = [
'3PKEDaainApM4u5Tqm1nn3txzZWbtFXUQ2',
'3He2JrsT33DEnjCgdpPgc6RXD3UogALCNF',
'3QybQyM8i9YR9e9Tgb1zLsYHHRXWF1eDAR',
'3PNwCSHKNfCjzvcU8XE9N8wp8DRxrUzsyL'

]

11

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://en.bitcoin.it/wiki/BIP_0049

GridPlus SDK Documentation, Release 0.0.0

12 Chapter 5. Getting Addresses

CHAPTER 6

Requesting Signatures

This function requires the user to interact with the Lattice. It therefore uses your client’s timeout to
sever the request if needed. If the SDK is connected to the wrong wallet or if the device has no current
active wallet, this request will take additional time to complete.

The Lattice device, at its core, is a tightly controlled, highly configurable, cryptographic signing machine. By
default, each pairing (the persistent association between your app and a user’s lattice) allows the app an ability to
request signatures that the user must manually authorize.

6.1 Request Types

The following types of requests are currently supported by the Lattice. These correspond to the currency param
in the sign options (signOpts below)

6.2 ETH (Ethereum transaction)

Ethereum transactions consist of six fields. An example payload looks as follows:

const data = {
nonce: '0x01',
gasLimit: '0x61a8,
gasPrice: '0x2540be400,
to: '0xe242e54155b1abc71fc118065270cecaaf8b7768',
value: 0,
data: '0x12345678'
// -- m/44'/60'/0'/0/0
signerPath: [HARDENED_OFFSET+44, HARDENED_OFFSET+60, HARDENED_OFFSET, 0, 0],
chainId: 'rinkeby',
useEIP155: false,

}
const signOpts = {

currency: 'ETH',
data: data,

}

13

GridPlus SDK Documentation, Release 0.0.0

6.2.1 Chain ID

The chainId param is used to provide replay protectin for most Ethereum-based chains. We allow several ways
to specify this:

1. A “named” chain, with options being: mainnet, ropsten, rinkeby, kovan, goerli

2. An integer (only recommended for small numbers – see below section)

3. A hex string (e.g. 0x1234)

Hex strings are strongly recommended

Generally, we recommend not using Javascript integers and never using them for fields that may contain large
values, such as value (which is measured in units of wei, where 10**18 wei = 1 ether). We recommend using
hex strings instead, as shown in the example above. Consider the following dummy code in node.js:

> new bn(2).pow(64).toString(16)
'10000000000000000'
> (2**64).toString(16)
'10000000000000000'
> (2**64-2).toString(16)
'10000000000000000'
> new bn(2**64).toString(16)
'10000000000000180'
> 2**64
18446744073709552000
> new bn(18446744073709552000-2).toString(16)
'10000000000000180'

As you can see, all sorts of problems arise from large Javascript integers. Don’t use them!

Note that in the gridplus-sdk, all numerical inputs are converted to big numbers, but we still recommend
avoiding them.

“Named” chainIds

We support a hand full of human-readable strings for specifying a network. These include the Ethereum mainnet
and current widely used testnets. It is important to note that some networks use EIP155 by default and others
don’t. You can, of course, specify whether you want to use EIP155 or not explicitly using the eip155 param.
Please see the following table for EIP155 defaults:

6.3 ETH_MSG (Ethereum message)

In addition to transactions, we support signing ETH messages, e.g.:

const data = {
protocol: 'signPersonal',
payload: '0xdeadbeef',
signerPath: [HARDENED_OFFSET+44, HARDENED_OFFSET+60, HARDENED_OFFSET, 0, 0],

}
const signOpts = {

currency: 'ETH_MSG',
data: data,

}

6.3.1 Supported ETH_MSG protocols

• signPersonal: ETH personalSign (EIP191)

14 Chapter 6. Requesting Signatures

https://github.com/ethereum/EIPs/issues/191

GridPlus SDK Documentation, Release 0.0.0

6.4 BTC (Bitcoin transaction)

Bitcoin transactions are constructed by referencing a set of inputs to spend and a recipient + output value. You
should also specify a change address path (defaults to m/44'/0'/0'/1/0):

const data = {
prevOuts: [

{
txHash:

→˓'08911991c5659349fa507419a20fd398d66d59e823bca1b1b94f8f19e21be44c',
value: 3469416,
index: 1,
signerPath: [HARDENED_OFFSET+49, HARDENED_OFFSET, HARDENED_OFFSET, 1,

→˓0],
},
{

txHash:
→˓'19e7aa056a82b790c478e619153c35195211b58923a8e74d3540f8ff1f25ecef',

value: 3461572,
index: 0,
signerPath: [HARDENED_OFFSET+49, HARDENED_OFFSET, HARDENED_OFFSET, 0,

→˓5],
}

],
recipient: 'mhifA1DwiMPHTjSJM8FFSL8ibrzWaBCkVT',
value: 1000,
fee: 1000,
isSegwit: true,
changePath: [HARDENED_OFFSET+49, HARDENED_OFFSET, HARDENED_OFFSET, 1, 1],

=}
const signOpts = {

currency: 'BTC',
data: data,

}

6.5 Requesting the Signature

Once you build the data needed, you can request a signature using the following pattern:

client.sign(signOpts, (err, signedTx) => {

})

Response

The returned signedTx object has the following properties:

6.4. BTC (Bitcoin transaction) 15

GridPlus SDK Documentation, Release 0.0.0

16 Chapter 6. Requesting Signatures

CHAPTER 7

Getting Active Wallets

The Lattice1 has two wallet “slots”: an internal wallet that is always the same for a given device and an external
slot for SafeCard wallets. When a SafeCard is inserted or removed, the external slot is updated. If a wallet is
present in a given slot, the device will allow paired requesters to get the “wallet UID”, against which addresses
or signatures may be requested. This UID is a permanent identifier for a given wallet (i.e. every SafeCard, once
setup, will have a permanent UID that maps directly to a wallet seed and, therefore, to a set of addresses).

Although these requests are abstracted from the user of this SDK, you may look at the active wallets currently
known by the SDK. This may be useful for determining if there is a SafeCard inserted.

const wallet = client.getActiveWallet();

This will return an object containing:

uid // 32 byte buffer id
name // 20 char (max) string
capabilities // 4 byte flag
external // boolean

Where uid is a 32-byte buffer containing the wallet UID discussed above and external is true if
the active wallet is a SafeCard. **NOTE: If a SafeCard is inserted, this will be the data returned from
getActiveWallet(). When it is removed, you will get the internal wallet data. Currently, name and
capabilities are not used.

7.1 Detecting Card Insertion/Removal

When a card is inserted or removed, this will affect the active wallet of the device. If you want to stay up to date
on the latest wallet state, you will need to refresh the active wallet. You can do this by “re-connecting”:

client.connect((err) => {
activeWallet = client.getActiveWallet();

})

Note that you may only call connect with one argument once a deviceID has been saved, i.e. after you’ve
called connect once with the device ID as the first argument.

17

	Installation
	Instantiating a Client
	Client options

	Connecting to a Lattice
	Canceling a Pairing Request

	Pairing with a Lattice
	Getting Addresses
	Requesting Signatures
	Request Types
	ETH (Ethereum transaction)
	ETH_MSG (Ethereum message)
	BTC (Bitcoin transaction)
	Requesting the Signature

	Getting Active Wallets
	Detecting Card Insertion/Removal

